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A THEORETICAL STUDY OF THE EFFECT OF FORWARD SPEED ON THE FREE-SPACE
SOUND-PRESSURE FIELD AROUND PROPELLERS ‘

By I. E. GARRICKand CHARmS E. WATKINS

SUMMARY

TIM sound-premure jield of a rotating propeller in forward
jlight in jree 8pace zk anulyzed by replucing the norms.1-premwre
distribution over the propeUer assoeiatd with thud and torque
by a distnlndhn of acoustic premure doublti acting at the
propeller diek and wbject to uniform rectihwar motion. The
bti elemni wed to synthaize thejield ia the Pressurew of
a COnceniratedjorce mm”ng uniformly at 8ub80ni4 8peeds, for
which an expremion generalim”ng m of hmb’8 for the jixed
concem!.rdd form is B“uen. This result is pre+wmko?both for
the mOrn~ a?d for the ~ observer. ~ 8trengrth of the
doublei distribution h related to the thrust and torque didri-
bution and to ii% variow .Faurier coe~enti in a convenient
wau. The 8ound ji.eld i8 exprewwd by integration over th+?
propeller dfik, and a.ko by integration over an e$ective ring, andti
given both for the mar prwsure~d and, in a timpler form, for
t)ie far jiekl. .Known r& for the zero-forunzrd-speed me
prment thenwelnn in ti qeeial me of Mach number M=O.
Some illustrativeezumpltxare deuhted and di8cw88ed.

INTRODUCTION

The rotating propeller is the source of an intense souud-
pressuro field which can be associated with the periodic
reactions on the medium arising from the distribution of
pressure rotating along with the blades. This pressure
distribution consists in part of a distribution due to thickness
of the blades, whose resultant force in subsonic potential
flow is zero, and in port of a distribution due to angle of
attack and camber of the blodes, whose integrated effect
includes the induced drag and corresponds almost wholly to
the thrust and torque distribution over the blade. Another
source of propeller noise may be associated with flow separa-
tion and with friction or shear due to the boundary layer;
both effects lead to vorticity shed into the wake and hence
the designation vortm noise. The vortex noise and the noise
due to thickness (where wave drag is not a large factor) are,
however, for actual propellers normally of a. considerably
smaller magnitude than the rotational sound due to torque
and thrust; hence only the latter effect will be considered in
the present work.

A large number of investigators have studied vsrious
phases of the determination of the sound or noise field of

rotating propellers. In addition to the references cited, a
bibliography is included of representative work on this
subject. A simplification that has frequently been made in
propeller-noise investigations is to limit the considerations
to the static or standing propeller. The work of (%tin in
1936 (ref. 1) represents a development of this type that tiakes
possible a satisfactory prediction of the amplitude of sound
pressure due to thrust and torque of a propeller rotating on n
stand in SW air. Although Gutin’s theory is applicable to
the near oscillating pr~ure field of the propeller, his results
in reference 1 are limited to the determination of the funda-
mental and the fit few harmonics at a distance far from the
propeller, that is, seversJ diameters away. The determina-
tion of the near pressure field, however, has been of concern
both from structural and physiological considerations.
Hubbard and Regier (ref. 2) extended the application of
Gutin’s work to describe the oscillating pressure field and to
determine the amplitude of noise at points near the propeller,
in some cases within a blade chord length from the tip.
They investigated analytically the effect of several of the
parameters that enter in the theory and also gave compari-
sons with experiment which were quite satisfactory.

The existing theoretical work hss found useful application
for static conditions and for conditions of low forward speed,
for. example, near take-off. For conditions of high forward
speeds, however, many pertinent questions have arisen as to
the poeaible effects of the forward speed on the oscillating
pressure field of the propeller. A few investigators have
examined phases of this problem; Bryan, Hart, Shirokov,
Blokhintzev, and particularly Kuessner and Billings (see
bibliography) may be m6ntioned, but most of this work
seemsincomplete or diflicult to apply. It appeared desirable,
especially for applications, to m-examine the theoretical
problem for the propeller at forward speed so as to have it
arise as a straightforward genendization of existing work for
the zero-forward-speed case. The purpose of the present
report is therefore to extend the theory of Gutin (ref. 1) and -
the work of Hubbard and Regier (ref. 2) so as to include the
effeot of subsonic forward speed of the propeller on the near
and the far oscillating seund-pressure field caused by torque
and thrust of the propeller.
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This report includes the following material: (a) The sound-
prewure field associated with a uniformly moving concen-
trated force is given, with details of the explicit development
contained in the appendix. This result serves as a basic ele-
m&t for synthesizing the total pressurefield. It is expressed
both for the ease of the observer or field point considered to be
moving along rectilinearly and uDiformly with thepropeller in
free space and for the case of the observer considered fixed and
the propeller in uniform flight. (b) The disturbance forces
associated with the pressure distribution acting 04 the me-
dium in the plane of the propeller disk are presented in the
manner similar to that of Gutin. (c) The Sound-praure
field resulting from the combined use of (a) and (b) is shown
in the form requiring integration” over the propeller disk
and in the simpler form making use of an effective propeller
radius. Approximations valid for the far field, which reduce
to Gutin’s results for the case of zero forward speed, are also
given. (d) Some numerical examples are calculated and
discu6sed. (e) Remarks are made on the usefulness and
limitations of the analysis.

SYMBOLS

A(r) chordwise distribution of thrust ‘acting on a
radial element of a propeller blade

B number of propeller blades
b(r) width of propeller blades
c velocity of sound
c. power coefficient, P/pnW
c. thrustcoefficient, T/pn2P
D propeller diameter
F(r) chordwise distribution of forces perpendicular to

the thrust of a propeller blade and giving rise
to the torque

F,, 1’,, Fz components of force vector F

J.B

M
m
n
P

L
PQ

PT

Bessel function of first kind with index mll -
Mach number, V/c
order of harmonic
propeller rotatiomd speed, rps
power
pressure ‘
pressure magnitude .

.

pressure due to torque
pressure due to thrust

Pmu root-mean-square pressure,
?1
‘2P

Q torque
‘R length of propeller blades

R, effective length of propeller blades
r radius to a blade element
r, O polar coordinates in yz=plane
s= J(z–$J’+P[@–yJ’+ (z–zJ3

&=@Tjq5$7
8=J(x—zly+(y-yly+ (2—21)2
so= J-
8cI,@ polar coordinate in W-plane
T thrust

t time
v forward velocity
% Y] z Cart&an coordinates

/3=&7i7’
BE blade angle
~ propeller efficiency
P fluid density

M(z–z,) +su=
B’

b~=—
&

To period, 2~/BQ
$2 angular velocity.
U frequency of mth harmonic, mBQ

* fundamental frequency, BQ

ANALYSIS

EXTRNSIONOF A FORMDLAIN LAME’S HYDRODYNAMICS” FOR THE
SODND-PRZSSUREFIELDOF A FTXRDCONCENTRATEDFORCETO

THAT OF A MOTTNQFORCE

On thebasisof acoustic considerationsof the classicalhydro-
dynamic equations, Lamb (ref. 3)Z gives the pressure at
any field point z, y, z associated with an extermd periodio
force Aeb’ acting in the z-direction and concentrated at the
location zl, yl, ZI as

(1)

where

8=4(X—42+ @_~I)2+ (2—21)2 (2)

The concentrated force may be regarded as stemming from
the limit of a distribution of an increasing prtwmre differ-
ence over a decreasing area, whose product in the limit of
zero area is equal to the force. For an arbitrary concen-
trated force of components F., F,, Fz the result generalizes as
Lamb indicates to -

(3)

pp.4&O+l.
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This formuht shows that the pressure field obtained from the
concontmted force has the character of a doublet or a dipole 3;
in its periodic form it haz played a ceritralrole in the develop-
ment of the noise and pressure fields of propellers due to the
propeller torque and thrust. How-ever, the formula refers to
a concentrated force and to coordinates tied in space. To
treat the case involving eilects of forward speed, it is expedient
to obtain the required extension of the preceding formula.

The extension of equation (3) required for the case of a
uniformly moving concentrated force is given in equation
(4), which follows. Details for its derivation are supplied
in the appendix Let the concentrated force have compo-
nents F., Fp, F.; let it be moving uniformly with velocity V
in the direction of the positive x-axis; and let the coordinate
system also move uniformly with the same velocity. Then,
with x, y, z now denoting the field point referred to this co-
ordinate system and with z1, yl, Z1denoting the coordinates
of the concentrated moving force

where

S=-J(x-x,)’+@[(y-vI)’+ (2–%)1

M(z–z,)+sG @
I

(5)

P=J=@ J

I?igure 1 illustrates the geometric meaning of the quantities
s, iS, and U. The force located at O(zW~,zJ and the field

FIaURD l.—@ometria ropresontation of 8, S, and u.

$6k=3 thewOOsthd PK?SOI% !Sflu-&$ tbe di@3 rO~ by sqaatk)ll(3) ban

accalerstfondonblotor tie tie rateotohangeof a Sowdonblok

point at Q(z,y,z) are both in uniform motion with velocity
V h the x-direction. The distwme ~=8. The influence
at Q at time t stems from the action of the force when it
-was at position P, where P is obtained from the relation
~P~=M, the forward-speed Mach number. The distance .
P7 gives then directly the phase radius u. The perpendicular
dropped h-cm O onto PQ determines ~, which is equal to
the amplitude radius S. For ~Al=O both S and u reduce to
the ordinary radius s. Comparison of equations (3) and (4)
shows that the effect of the forward speed leads to replace
ment of 8 by S’ in the amplitude and by u in the phase.

The force variation of main concern herein is that of a
harmonically periodic force having components F=, Fu, I’.
varying in time as et‘~. Equation (4) becomes

(6)

where ~=0/c. Equation (6) is the basic relation to be made
use of in fhe subsequent analysis.

DISTURBANCEFOR(3R3IN TEE PROPELLERPLANE

Consider, as does Gutin (ref. 1), a propeller disk oriented
so that the axis passing through the center of the disk coin-
cides with the z-wis and let the propeller be assumed to
rotate, as in figure 2, in the yz-plane (cc=O) with positive
values of z corrixpondiug to points ahead of (and negative
values of z corresponding to points behind) the propeller
disk. The propeller is considered to move uniformly with
velocity Vin the positive z-direction. Points in the propeller

z

Y

// “
x v

FIGURE2.—Propsller disk and coordinate systam.



—

REPORT 1198—NATIONAL ADVISORY COMZdXITEE FOR AERONAU’ITCS .964

disk are designated by
(as t3~OWIl in fig. 2), by

(O,yl,zJ or, in polar coordinate

}

‘y~=r Cos e

Z1=T sin o
(7)

For definiteness, let the propeller be rotating counterclock-
wise as seen by an observer looking into the propeller toward
the .$ipstreaxn.

Each element of the propekr ‘is acted on by the surface
pressure distribution and this distribution may be resolved
into a thrust forc8 in the direction of the axis of rotation
(the z-axis) and into a force associated with the torque
which acts about the axis of rotation opposi@ the rotation.
Equal and opposite reaction forces to these are exerted on
the medium. The points of application of these forces are
imagined to act in a single plane designated as th6 pkme of
rotation or as the propeller di9k.

The reaction of the surface pressure distribution” of the
rotsting propeller on the medium at any instant is to be
replaced by fixed periodic forces acting at the propeller disk.
The propeller disk itself will be considered covered with the
necessary singuhwitieain the pressure or acoustic radiators
of proper strength and harmonic content to correspond to
this normal-pressure distribution. Them singular&ies will
be seen to be acceleration sour~ (acoustic radiator of zero
order) for those forces which act symmetrically on both
sides of the blade-that is, whose net force over each element
of the blade is zero-and to be acceleration doublets (acoustic
radiator of order one) for those forces acting antisymmetri-
Cally-that is, whose net force over each element of the blade
coyesponds to the difference in pressure over both sides of
the blade. The doublet distribution is that which is needed
to represent the thrust and torque distribution, in particular
that part of the thrust and torque distribution associated
with pressures acting normal .to the blade surface. This
part is practically all of it, mcapt that arjsing from skin
friction. (The effect of blade thickness maybe taken into
account by introducing either flow sources or acceleration
sources: the flow sources would lead to the sound-pressure
field due to thickness by the classical “piston” effect of the
moving blade on the flow field; the acceleration sources
would deal directly with the assumed or known contribution
to the pressure distribution over the blade due to thiclmess.)

Consider an element of the propeller at distance r from
the ask; let dr be its radial length and b its width measured
in the projection onto the plane of rotation. Let the forces
acting on the propeller element on each blade be A(r)dr in
the axial flight direction and F(r)dr in the direction opposed
to the directioii of rotation. Equal reaction forces acting
opposite to the flight direction and in the direction of rot~
tion, respectively, are exerted on the medium. These quan-
tities are related to thrust T and torque Q by the relations

(8a)

or

T=B
J

‘A(T)dr
o 1 (8b)

Q=B~ rF(r)dr

where B is the number of blades and R is the length of each
bk.de.

The petiodic impulse or reaction experienced at any
element of the disk may be expanded in a Fourier sorioa.
For simplicity let the element considered first be located on
the radial line 0=0 (the y-rmis) and afterwards be located
arbitrarily. To start with, assume that the forces are
uniformly distributed over the projected width b of the
blade element, that is, that the distribution of pressure
difference over the blade chord is rectangular. Then in the
area element r dr U%of the plane of rotation, the forces

A(r) dT~ and F(r)dr ~~ act on the medium during the

time interval in which this element is eclipsed by the pro-
jection of the propeller element. If the overlapping of the

element starts at t=O, it will end at t=T=$ and the over-

lapping of the element will start again by the next blade at

t=TO=B~~>where Q is the angular velocity of the propeller,

The rectangular-type forces experienced at the element of
the disk located at e=o by its periodic eclipse by the blade
may be developed in a Fourier series:

(0 for r<t<ro

F,*(t) =AO+fl~l Am coa (mB$W–~J

and simikdy

(9)

10 for r<t< TO

F,*(t) =BO+~~l B= cos (mB~t–qJ (lo)

where

J
(11)

The constants Ao and BO which correspond to the instantw
neous average thrust and torque over the blade element and
to the associated momentum ahed @to the slipstream do not
give rise to sound and need not be expressed. The phaze
angles ~ and ~m,which are small for the lower harmonics, are
needed to presem-e generality of discussion since Am C08 em
cmm.sponda to the coefficients of pure cosine terms and
Am sin em ccrresponti to coefficients of pure sine terms
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in the Fourier series. For the assumed rectangular distribu-
tion, e. and q= may be oabservedto be equal to zero if the
origin of time is chosen at the overlapping of the center line
of the blade by the y-axis since then only a pure cosine series
sutlices to express the distribution.

The general formulation of interest where the disk element
r dr dd is located at an angle o may be expressed directly
from these results, for, on a second area element r dr dd
shifted with &spect to the tit by the angle o in the rotational
direction, there act periodic forces of the same magnitude,
but retarded by the time 8/fL The corresponding Fourier
dwelopments are

()
F,(t)=F1* t–: =Ao+&4. Cos

()
FJt)=F2* t–: =Bo+$lBm COS

The quantity

(mB$2t-mBO-cJ

}

(12)

(mBW–mBO–V$

mm mBQt mBb—. — .—
To 2 2r

(13)

is small for the lower harmonics, especially for blade ele-
ments not near the hub. Blade elements near the hub,
where r is small, are eliminated from consideration since
they contribute very little to the air forces. One may

then replace in equation (11) sin ?by? so that, noting

the relations in equations (8a),

(14)

This approximation, which weights the harmonic content
of all the harmonics equally, may be observed to correspond
to the case of the thrust and torque distributed over &zero
blade. width (that is, to the mathematical pulse sometimes
termed the Dirac delta function). This approximation

becomes relatively less valid when ~ exceeds about

(
~ sin~—
4 )

~—O.707;~=0.785 or when 4m~ exceeds about unity;

that is, when the order of the harmonic exceeds ~ or,

roughly, l/solidity.
Moreover, the assumption of a uniform rectangular dis-

tribution of the forces across the blade has been made for
convenience, and other distributions may be treated if
desired. Some of the possible errors in the assumption
leading to equation (14) are discussed briefly by Gutin in
reference 1 and are shown to be genemdly negligible for the
lower harmonics. Regier and Hubbard (ref. 4) also discuss
this assumption in an illuminating manner. Figure 3,
which is taken from reference 4, shows the relative harmonic
content of difTerentassumed distributions of the same total
load for (rL)the mathwnatical sharp pulse, (b) a triangular

(o)

(a) Sharp pulse.

(b) Triangular puke. +=0.03.

(c) Rectangular pulse. +=0.03.

(d) RX!OtJ3D@~pUISO. &r=0.06.

FIwriz 3.—Effect of impulse shape on the relative amplitudes of the
harmonics.

‘ hat” pulse &=o.03, (c) a rectangular pulse #w=0.03, and

(d) a rectangular pulse ~=0.06. Blade widths of actual

propellers tend to be between cases (c)”and (d) for the most
effective parts of the propeller disk. The sharp-pulse
assumption generilly tends to overestimate the magnitude
of the higher harmonics. When the proper distribution is
lmown, appropriate correction factom for the required
harmonic may, of course, be applied to the magnitude of
the results given by the pulse solution.

The formulation in equation (12) need not be limited to
the one in which the propeller force distribution is uniform
throughout the propeller cycle. If interest should be
attached to a nonuniform distribution, as occurs for the
propeller yawed or pitched with respect to the flight path
or for one experiencing interference effects, it is readily
possible to allow for these eflects by permitting the ampli-
tude of the distribution to become a function of t?.

THE SOIJND_PRZSSIJREPIZLD

The general expressions for the resolution of me forces
associated with the thrust and torque on a radial blade
element (for example, eqs. (12)). may be put in the usual
convenient Compl= form (whose red part may correspond
to the formulation of interest):

JFZ=BO+ ~ Bmet[”t-mBO-~.J ‘
m-1

where u=mB~ and where for the speciil case of the
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rectangular-pulse distribution the coefficients are given as in
equation (11)..

With the use of the approximations for An and B. given
in equation (14), the periodic forcw acting on the medium
at the element r dr dd of the disk can be expressed for any
given harmonic in the forms

F __: AT ~f(mt-au) & &8,m— r dr

F
lldQ
~ r ~ &l Oei(~t-~OJdr ~=—. .u,m

F
lldQ

=––— cos Oef(ut--o dr cL9%= *r&

(16)

In the derivation of equation (16), the phase anglea % and
v., which - gene~y be n%lected for the 10TV~hm-
monics, have been put equal to zero, a value which corres-
ponds in the case considered (as has been mentioned) to the,
choice of 0=0 to correspond to the overlapping of the center
line of one of the blades at the time t=O. The index m indi-
cates the order of the harmonic considered. As discussed in
the preceding section, appropriate factors depending on the
harmonic number m, functions of the radius, and, for un-
symmetrical loading, functions also of o may (if lmown) be
applied to the terms in equation (16).

Pressure relations involtig integrations over the propeller
disk.-The pressure at any point in the free-space field pro-
duced by these components of the uniformly moving peri-
odic forces F., Fr, F= is given in equation (6). . With the
use of the components of force given in e,quation (16) and
by integration over the propeller disk, the total oscillating
pre~ure p for any given harmonic m (the index m will be
hereinafter dropped) is obtained horn equation (6) as a sum
of the pressure due to thrust p~ and that due to torque pa
as follows:

p=PT~pQ (17)

where

and where, in the expression for pQ, the operation ;$haz

been used for convenient to replace the equivalent operation
a a

‘he Z–ws e= The indicated differentiations with re-

spect to z and o can be carried out by use of the expressions
for u and S given in equations (5)

——=7T (–7TFFS-W)ax s

}%%=%w$-+?)’-”cos’) ’20)
Hence,

Another somewhat simpler expression for Pe can be obtained
from equation (19) by integration by parts with respect to o

~iul R

SS
‘1 dQ -fdee -ikv

pQ=~ ~ _’#&e —imB dr.a%s (23)
o

Pressure relations involving effeotive ring approzima-
tion.-Appreciable simplification may be achieved for calcula-
tion purposea by making use of the approximations inherent
in the assumption of n effective propeller radius R, so that
the integration with respect to r is avoided. Equations (21)
and (23) then reduce to

and

where, in both S and u, the points VI and Z1have the values
I/l=Re cOs8, z1=R. SiRO. In effect, equations (24) and (26)
imply that the propeller disk has,been replaced by an annular
ring in which the entire thrust and torque are concentrated.
The effective radius of this ring varies somewhat, m calcu-
lation shows, with the load distribution and with the order
of the harmonic. Deming (ref. 5) has shown by calculation
in special cases for the static propeller that the ring approxi-
mation is a reasonably good one. An effective radius of the
order of 0.8R is considered reasonable for adoption in initial
calculations.

The magnitude of the root-mean-square prwmm pfi, is
of interest, since most sound-recording instruments me
calibrated in terms of it. The contribution of the hrmnonio
of order m to the root-mean-square pressure is

Pm-g IPT+PQI,

or

prm_@,(A2+~2),,2

8Z
- (26)

where

When rotational symmetry exists m for the condition of
symmetrical loading, it is convenient in making the numerical
calculations to let the field point be in the W-plane, cm
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arrangement which can always be attained by suitable choice
of the line 8= O. It maybe desirable in some calculations to
divide the disk into several annular rings and to select
effective radii for the various rings.

Pressure relations for the far field,-A further simpHica-
tion in the results can be reached if the distance s horn the
propeller disk (O,yl, ZJ to the field point (z,y, 0) is large. Then
from

d=$?+ (y-vl)’+z?

there is obtained

6.%8,4$ (27)

where so= ~~ (the distance from the field point to the
center of the propeller disk). It also follows from

S’=ti+p(y-yl)’+p!zl’
that

(2s)

where
80= ~r~

If terms of order I/& are neglected in comparison with
terms of order 1/S, the sound pressure due to thrust is ob-
tained from equation (24) by use of equations (5) and (28):

~{ml 1
P-T~ge -’$(&+M*)$(M+i)re-’d’+’b%E”-’d

(29)

From the known integral relation

J
2reQomo-in8&=2T~. J=(~) (30)

o/

it follows that

pTu—l’&o~~e
-’$(”O+”’HM+io-) J~(%) ’31)

Similarly, from equation (25),

Observe that the argument of the Bessel
replaced by

I@Re
—=mBM’O’ *Oso

function may be

(33)

QR
where Mrot— ~——”~ the Mach number corresponding to the

rotational speed at the effective radius. (The far-field
approximation and the effective-radius approximation made
use of in mriving at eqs. (31) and (32) need not, of course,
be made simultaneously, since the required integration of the
Bessel functions with respect to the radius may be carried
out, at least numericfdly, wibout difficulty.)

Introduce the fundamental frequency denoted by w=@,
so that

~=mBQ=kc=wl
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The pressuremagnitude for any harmonic m is then given by

IPI=13%+I%I

This result may be compared with that for the case of zero
forward speed (M= O) given in reference 1:

It can be noted that the forward-speed Mach number
tiects the torque term containing Q only in the replacing of
sO=~w (the distance horn the field point to the propeller
hub) by the smaller distance &=~&~ This sub-
stitution occurs both @ the argument of the Bessel function
and in the outside factor l/SO. The thrust term containing
T is more strongly ailected, since, in addition to this change,
the field eifect ahead of and behind the propeller. disk is

influenced by the term M+% corresponding to a bachwsrd

shift by ~so=–M and also by an increase associated with the

factor I/&.

APPLICATIONTO A SPECIFICPROPELLER

In order to give some indication of the effect of forward-
speed Mach number on the sound pressure of a propeller,
calculations based on equation (26) for the near field and on
equation (34) for the far field have been made. For this
purpose, a two-blade research propeller having a 10-foot
diameter and operating under the various conditions sum-
marized in table I was chosen. As maybe noted h-em this
table, the propeller is assumed to operate at constant power;
that is, the power coefficient Op and the torque Q are held
constant. As the forward-speed Mach number is changed,
the blade angle L?Eand consequently the thrust Tare changed
according to the propeller charts of reference 6 so as to make
the assumed conditions consistent with actual test operating
conditions. Only the fundamental, the first harmonic m= 1,
is considered in these examplea and the value chosen for the
effective radius R, is 0.8R or 4 feet. It should be pointed
out that the sound pressure computed horn the data of table
I would be obtained in pounds per square foot, since these

TABLE I.-SEA-LEVEL OPERATING CONDITIONS FOR A
10- FOOT- DIAMETER TWO -BLADE PROPELLER

(DATA FROM REFERENCE 6)

[P=815 hp; C,= O.1O; Q=2,680 lb-ft; k=02?9686]

M

T
V/nD J7E.d%’ C%

o 0 24 0.11
.1 .4a 20 .11
.!4 .84 % .094
.8 L 20’ 33 .Cw
.4 1.es s? .Obl
.6 z 10 4a .Ml
.6 252 47, .032
.7 294 HI .CM
.8 3.$a 5s .0186

aiz 60 .Ona
TI

porcmtT, ft-lb

o Lwl
46 Awl
76 Lm
a6 LCWJ
$7 m
86 m
so m
70 al
62 Slo
46 20.5
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data are given in English units. Tlwe values have been
converted to dynes pm-square centimeter in the results given
in the figures by multiplication by the approximate conver-
sion factor 480.

Cahmlationsfor the near fLeld.-Calculations of the root-

(
~ 1P]) breed on equation (26)mean-square pressure pw=—

are made for various values of z in the range fkom —0.5D to
0.5D along the line Y=O.6D (6 ft), that is, along a line + of
the propeller radius from the tip and extending a distance
of 1 radius behind to 1 radius ahead of the plane of rotation.
These results are shown plotted as a function of z/D for
several Mach numbers in &ure 4. It can be noted in this
figure that, for each Mach number, two peaks generally
appear, one ahead of and one behind the plane of rotation.
For the set of conditions under consideration (see table I),
the highest peak amplitudes of pressure occur just behind
the propeller plane at vah.w of z/D in the range tim —0.15
to —0.075. As the Mach number is increased from Oto 0.4,
the peak amplitudes decrease b_magnitude but, as the Mach
number is increased fkom 0.4 to 0.9, this traud is reversed
and the peak amplitudes increase in magnitude, the peak for
M=o.9 being about 1.4 times that for iM=O. Also, as M
increases from O to 0.9, the point at which the highest peak
prewme occurs moves somewhat nearer the propeller plane.
Thus, the generally severe sound-pressure conditions at
take-off (M- O) tend to be alleviated in flight at the lower
Mach numbers but may be reached again and even exceeded
at the high= flight Ma& numbers. The calculations for
low Mach numbers presented in iigure 4, it should be noted,
are in substantial agreement with both calculated and
measured results of reference 2. The high peak pressures
obtained for the highest Mach numbers indicate that, with
propeller-driven airplanes,~the sound pressures generated
near the tips of the propellers axe of significance and of
possible concern with regard to both structural considerations
and passenger comfort.

Calculations for the far field.-Calc~ations of the root-
mean-square pressures based on equation (34) for various
values of z along the line y=2D (2o ft) are shown plotted in
@e 5. The trend with regard to Ma& number in this
be is about the same as was noted in figure 4 for Y= O.6D,
but the relative effect of the forward Mach number appears
~weater at a distance. Howevar, because of the greater
distances in figure 5 than in figure 4, the peak amplitudes
are considerably less.

Directional characteristics of the sound field.-For some
purposes, especially with regard to calculation for the far
field, it is desirable to consider the character of the sound
pressure in terms of polar coordinates. For this purpose,
substitutions can be made in equation (34) (and eq. (26))
as follows:

Z=so Cos+ y=80 SiIl @ 80=4~ (36)
t

The quantities x/S. and V/S. in equation
may then be written as

(34) (dnd eq. (26))

(37)

With these substitutions, equation (34) becomes

(38)

Calculations based on equation (38) for the Mach numbers
of Oand 0.8 for a constant value of sO=2D are shown plottod
as dashed curves in figure 6. The solid curves in this figure
represent results of calculations along the line y=2D

obtained by replacing so by & with y=2D in equation

(30) for the various Mach numbem considered in figures 4
and 5. A comparison of results of calculations along the
line y=2D with those along the circle SO=2D for .M=O and
M=O.8 indicates that, for high Mach numbers (of the order
of M= O.8), the peak pressures calculated along a line
y= Constant are about the same as those calculated cdong
the circle with radius equal to the constant value of ~.
Observe the second pressure peak which has developed in
the forward location at M=o.9.

Separate components due to torque and to thrust of the
sound field.-li order to give some indication as to the
nature and proportion of sound presaur~ as-s6ciated with
each of the quantities, thrust T and torque Q, the root-mean-
square pressures associated with wch of these quantities for
M=O and M=O.8 are plotted for y=O.6D (6 ft) in @ure 7.
These plots show, as do equations (26) and (34), that the
rootimean-square pressures associated with the propelhm
torque are symmetrically distributed with respect to tho
plane of the propeller for all Mach numbem, whereaa tho
root-mean-square pressures ~ciated with the thrust am
symmetrical with respect to thi9 plane only for ill= O. I?or
the particular propeller and operating conditions under con-
sideration, the amplitudes of pressure associated with thrust
for low Mach numbers are higher than those associated with
torque, but for high Mach numbers the opposite is true. In
the interpretation of figure 7, it should be recalled that the
re.wdtadepend on the assumed operating conditions and that
the torque Q is the same (2,680 ft-lb) in both parts of the
figure; whereas the thrust is 1,850 pounds at M=O qnd 310
pounds at M=O.8. P1ots of this type can be used to obtain
the sound pressure for various thrust and torque coefficients
for a given propeller, since these coe5ciente appear as factors
in equations (26) and (34) and hence can be normalized,
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FIGURD 6.—Polar diagrama of the root-mean-square pressures oaloulated along a line v=20 feet and along a circle .so=20 feet for a two-blade
lo-foot-diameter propeller at several forward-epeed Maohnumbers. C7P=O.1O;m= 1; k= O.29686. (Operating condition of propeller given
in table I.)



972 REPORT 1198—NA’PIONAJJ ADVTSORY COMUITTEE FOR AERONAUTICS

\

(a) Af=O; 2’=1850 lb. (b) M=O.8; 2“=310 lb.
Fmwrm 7.—Distribution of the ,rootimm-sware total pr~es and the roo~m~n-ware pr-ures =ooiated *th thrust and torque for @

two-blade, lo-foot-diameter propeller at forward-speed Maoh numbem of O and 0.8. CF=IO.1O; m= 1; k= 0.29686; u= 6 feet. (Operating
conditio~ of propeller given in table I.)

It is of particular interest to note in the plot for M=O.8
that the peak pressures associated with both thrust and
torque tie considerably greater than the peak presure asw-
ci~ted with the sum of these quantities. This result indi-
cates that the phase relationship betvveenthe two components
is, in this case, such that each has a canceling effect on the
other. Also in this case, the pressure associated with thrust
may have its greatest value ahead of the plane of the pr&
peller; whereas the total pressurehas its greatest value behind
the plane of tie propeller.

The discussion of the figuresbased on the speciiic examplw
illustrates the fact that the results do depend markedly on
the assumed operating conditions. Moreover, only the
fundamental harmonic (m= 1) for the specilic two-blade
propeller has been illustrated. Trend studiw on efieck of
higher harmonics, number of blades, and dHerent operating
conditions would be of considerable interest. Some pre-
liminary calculations on the sound pressures associated with
the fundamental of a sti-blade propeller have shown a
greater relative effect of the forward-speed Mach number.

CONCLUDINGREMARES

Esprcssions have been given for the sound-pressure field
due to the distribution of thrust aad torque for any given
harmonic of a rotating propeller in uniform subsonic flight.
The general expressions (eqs. (17) to (23)) involve integra-
tions over the propeller disk; approximab expressions for

the near fields (eqs. (24) to (26)) and for the far field (oqs.
(31), (32), and 34)) involve integrations over a ring with an
effective radius. The numerical examples have illustrated
some free-space sound-pressure results for the fundamental
of a specific two-blade propeller under various operating
conditions at various forward speeds.

It is pertinent to remark again on some of the limitations
of the analysis. The analysis presented utilizes the torque
and the thrust distributions, which may be given empirically
or theoretically, in such a way as to require that they arise
purely from pressures acting normal to the surface of the
blades. Empirical values of the thrust and torque includo
a contribution, generally smaUJdue to skin friction and to
separated flow. Some caution is then needed in the use of
the results. For example, the empirical torque term is
somewhat larger than the torque due purely to normal
pressures and, hence, the associated sound result clue to
torque may be overestimated slightly; similarly, the empiri-
cal thrust term may slightly underestimate the sound due
to thrust. At high tip speeds there may be significant con-
tributions to the noise due to wave drag associated with the
thickness. These contributions are mainly taken into ac-
count by the effects of the wave drag on the torque. (Othw
sound effects of the thickness should be separately calcuhtml
and included but these effects have not been explicitly
presented herein.)

Another way of looking at the approximation, and perhaps
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a generally more convenient one for the study of trends, is to
consider that the aasumed torque and thrust distributions
are acturd theoretical ones, obtained if necessary by adjust-
ment of the blades of the propeller in a potential flow; and
hence the sound-prwwure field is that corresponding to the
chosen thrust and torque in potential flow. Although the
sound-pressure field and the aerodynamic velocity field have
been considered as separati, it is of interest and of significance
that the same concepts leading to the calculation of the sound
field (made use of in the form of the acceleration potential)
can lead to the linearized aerodynamics of the propeller in
compressible flow, including the representation of the
vorticity left behind in the wake as a result of spanwise
variation of loading. The theoretical induced drag and the
theoretical wave dmg (which is a form of acoustic loss) are
inherently included in the representation employed.

It maybe worthy of repetition that the pressure formulas
as given tend to overestimate the contribution of the higher
harmonics and that appropriate factors based on chordwise
loading can be devised and may be required. lMoreover,
because of the theoretical (as well as the empirical) change in

aerodynamic loading along the blade radially with incre&ing
tip Mach number and forward-speed Mach number, the
appropriate factors will change. In addition, the effective
radius will be altered with the loading and with the harmonic
considered. Thus, although 0.8 blade radius may be suitable
as an effective radius for normal loading, a smaller value for
the effective radius may be more suitable for conditions where
unloading of the tip occurs. The use of several effective
radii corresponding to separation of disk into several rings.
may therefore be desirable.

A calculation study of trends under diflerent assumed
conditions, the effect of unsymmetrical loading, or of dual
propellers, effects of obstacles or boundaries on the free-space
results, and experimental confirmations for the in-flight
propeller are imkmxting matters for further investigation.
It is also to be expected that effects of thickness will need
to be taken into account in particular comparisons.

LANG~EY AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COLRJITTDE FOR AERONAUTICS,

LANGLEY I?IDLD, VA., Augwt 31, 196$.
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APPENDIX

THE SOUND-PRESSUREFIELDASSOCIATEDWITH A UNIFORMLYMOVINGFORCE

DERIVATION OF EQUATIONS(4) AND (8)

Lamb (ref. 3, p. 502) derives from hydrodymunkd princi-
ples the dMerential equation satisfied by the pressure con-
densation s“ in the acoustic field associated with arbitrarily
varying fixed forces acting on the medium

(Al)

where Lamb’s X, Y, Z are actually the extraneous forces per
unit volume divided by the densi~ p. (In effect, Lamb is
dealing here with the acceleration potential.) In terms of
the perturbation pressure p= #s* the equation is

ngp=div F

(A2)

where F is the arbitrary force per unit volume having com-
ponents l?., Fw,F,. Ltib’ shows that, if the periodic force
Ae{u’ is imagined concentrated on an infinitely small space
at (z1,Y1,ZJ and to be in the direction of z, the pressure at
the field point (z, y, z) (the distance s ‘from the location of
the force) is given by

_A a 6’”(’-9
‘= Giiz -n- (A3)

where

8= J(Z—ZJ*+ (y-yl)~+ (z—zl)~

so that the concentrated force is equivalent to a double
source or acceleration doublet whose axis is in the direction
of the force. For a general harmonically periodic force F
having components F=, FE, Fs varying in time as d“:

~-*
p=_.L@. v)T

(A4)

where k=:

For an arbitrary time-dependent concentrated force F(t)
located at (t,q,~), the pressure at field point (z, y, z) can be
expressedas

P -& div ‘(’$’+

_-;T[:Fz~::)+$Fy@-:)+;Fz@+)]8 8 8

as?efcdmota%P. a.
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where the differentiations tiect the result ohly through the
variable s.

The extension to a moving concentrated forco may, within
the framework of small-perturbation theo~, be made in
several ways—for example as mentioned in reference 7. Ono
formal procedure utilized by Ktissner, for example, items 12
and 13 of Bibliography, makes use of the invariance proper-
ties of the wave equation and utilizes combined Grdileunand
Lorentz transformations. The following direct procedure
given briefly in reference 7 is believed to be of intrinsic
interest, as it represents a simplification in I?randtl’s proco-
dure (ref. 8) for the case of moving constant source clistribu-
tions, a procedure which consists of scheduling a succession
of fixed sources in a path to act consecutively one after tho
other so as to represent in effect the desired source moving
along its path. Let the arbitrary concentmtad force act
only as an impulse during an infinitesimal interval at time
t=r. The impulse maybe written as

F(t)6(t–~) (A6)

where the impulse function 6(~)= O for 7#O and is charac-
terized for r=O as having unit area with respect to T. The
useful property of the impulse functiQn of “sifting or selecb
in#’ a value of a function is exhibited by the following rela-
tion (see, for example, ref. 9, p. 61):

J
- j(u–T)6(7)dT=

J
:mj(T)@T)dT

-.
=f (.) (A7)

Let a succession of such impulses act, one following the
other, in a path, points along which are giveti in space-fixed
coordinates by

:=:(7) ??=?I(:) r=r(7)

The efEectat time t of all such impulses which act before the
time t is then given from Lamb’s result (eq. (A5)) as

‘=-+JYLW-7+

(As)

whkre, as has been defined, there is a nonzero contribution
to the integral only for values of r defined by the clmracter-
istic relation

t–+-;&:(7)]’+&n(T)]’+ [z–f(7)]’ (A9)

which expresses the distance between the source point and
the field point in terms of the time of travel of the outgoing
waves.

The integral in equation (As) corresponds to a summation
of temporary. fixed aourcea. To represent the case of uni-
form rectilinem motion with velocity V in the positivo
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z-direction, let the sources be located on the &mia and flow
consecutively one after the other at the positions

so that for r= — ~ the source is located at f= — m and for
~= O the source is located at the origin. It follows that
the distance between source point and field point is

Replace in equation (As) the variable Tby o where

t—r—~=—e (A12)

By the sifting property of the 6-function (eq. (A7)) the
integral will have a value only for 0= O and equation (AS)
becomes

(A13)

where the quantity within the bracket is now to be evaluated.
Equations (Al 1) and (A12) give a quadratic equation for
r which, on choice of the solution that leads to r<t and
with 0=0, gives

(A14)

where
S= J(z–vt)’+@ (@+&)

-ii=:

Equations (Al 1) and (A12) also give

10% c
; %=cl?-v (Z—VT)

where replacing s by its characteristic value c(t—T) from
equation (A9) and replacing r by its value given in equation
(A14) yields, for 0=0,

ldr 1-—=.
S&’ S

(A15)

where S is defined in equation (A14). Equation (A13)
becomes

––~ divP—
‘[6%+$] (A,,,

s

This result is referred to space-tied coordinates; it iz
fially desired also to express this result in terms of a field
point (zi,2f0,zJ of a coordinate system moving uniformly
along with the source located at z,, y,, z, so that one may put

z— Vt=z)-zl I/=1/o-yl z=~—z~

After this substitution is made, the zero subscripts may be
dropped to yield as the end result corresponding to equation

(A6) for the source and the coordinate system in uniform
rectilinear motion:

where

.

Equation
(4) of the

()F t–;
~=__& & s (A17)

s= J(x–x,)’+& [(y-Yl)’+(z-zl)l

M(z–z,)+su=
P’

@. ~m

(A17) corresponds to the result given in equation
analysis. “ For the periodic harmonic force F

varyinga9e i“t, it may be expressed in the form

o
p=–-!-p.v)~ (A18)

which is equivalent to equation (6) of the analysis. Equa-
tions (A17) and (A18) are the sought-for generalizations of
equations (A5) and (A4) of the appendix, for the case where
the disturbance and the field point are in uniform rectilinear
motion. Comparison of these equations shows at once that
s is replaced by S in the amplitude and by u in the phase.
A geometric interpretation of these quantities is shown in
ilgure 1 and discumed in the analysis following equation (5).

REMARKSON THE CASEOF TEE MOVINGDISTURBANCEAND THB
FIXEDOBSERVER

A few remarks are in order on the signiikance of equation
(A16). In this equation, the field point (z,y,z) is given in
space-fixed coordinates while the disturbance force (or
propeller) is in the in-flight condition moving with velocity
V in the positive Xklirection. Its location is given by
zl= Vt, yl= O, ZI=O so that at t=O it ti located at the OI%@
It may be observed that the distance between disturbance
and field point S is numerically the same whether given by
the relation in equation (A16) or (A17). Hence, the pressure
magnitude at, any observer location for a sound-radiating
element of the in-tight propeller is the same as that for the
observer moving along with the propeller, provided the proper
instantaneous distance between observer and propeller is
used. How-ever, there will be a difference in the frequency
perceived by the observer. This frequency will be that for the
case of the uniformly moving observer modified by the
Doppler effect; thus, the frequency of each harmonic is modi-
fied by c/(c+ V,), where V, is the component of the propeller
forward speed (with proper sign: minus for approaching,
plus for receding horn the observer) in the acoustical direc-
tion from the observer to, say, for the far approximation,
the hub of the propeller. The acoustical direction is not
quite that from the observer to the propeller location; it
actually points from the observer to the location of the
proppller when the sound which roles the observer was
emitted (direction @ rather than ~ in fig. 1). The Doppler
frequency factor c/(c+ V,) is given geometrically in figure 1

by the ratio $$=~.
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